Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 870172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928898

RESUMO

Clinically silent corticotroph tumors are usually macroadenomas that comprise 20% of ACTH tumors. They frequently progress to aggressive tumors with high recurrence, invasiveness, and on rare occasions, they may become hormonally active causing Cushing's disease. Trustable biomarkers that can predict their aggressive course, as well as their response to traditional or new therapies, are paramount. Aberrant ß-Catenin expression and localization have been proposed as responsible for several malignancies including pituitary tumors. Nevertheless, the role of ß-Catenin in the aggressive transformation of silent corticotropinomas and their response to Temozolomide salvage treatment have not been explored yet. In this work, we present a case of a silent corticotroph tumor that invaded cavernous sinus and compressed optic chiasm and, after a first total resection and tumor remission it recurred six years later as an aggressive ACTH-secreting tumor. This lesion grew with carotid compromise and caused Cushing's signs. It required multiple medical treatments including Cabergoline, Ketoconazole, TMZ, and radiotherapy. Besides, other two surgeries were needed until it could be controlled. Interestingly, we found α-SMA vascular area reduction and differential ß-Catenin cell localization in the more aggressive tumor stages characterized by high Ki-67 indexes and p53 expression. Our results may indicate a role of angiogenesis and ß-Catenin trigged events in the pituitary tumor progression, which could in turn affect the response to TMZ and/or conventional treatments. These molecular findings in this unusual case could be useful for future management of aggressive pituitary tumors.


Assuntos
Adenoma , Neoplasias Hipofisárias , Adenoma/patologia , Hormônio Adrenocorticotrópico/metabolismo , Corticotrofos/metabolismo , Corticotrofos/patologia , Humanos , Neoplasias Hipofisárias/patologia , Temozolomida/uso terapêutico , beta Catenina/metabolismo
2.
Tumour Biol ; 44(1): 85-105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811548

RESUMO

INTRODUCTION: Prolactinomas are the most frequent pituitary tumor subtype. Despite most of them respond to medical treatment, a proportion are resistant and become a challenge in clinical management. Wnt/ß-Catenin pathway has been implicated in several cancers including pituitary tumors and other sellar region malignancies. Interestingly, Wnt/ß-Catenin inhibition augments the cytotoxicity of the chemotherapeutic agent Temozolomide (TMZ) in different cancers. TMZ is now being implemented as rescue therapy for aggressive pituitary adenoma treatment. However, the molecular mechanisms associated with TMZ action in pituitary tumors remain unclear. OBJECTIVES: Our aims in the present study were to evaluate differential ß-Catenin expression in human resistant prolactinomas and Wnt/ß-Catenin signaling activation and involvement in Prolactin (PRL) secreting experimental models treated with TMZ. RESULTS: We first evaluated by immunohistochemistry ß-Catenin localization in human resistant prolactinomas in which we demonstrated reduced membrane ß-Catenin in prolactinoma cells compared to normal pituitaries, independently of the Ki-67 proliferation indexes. In turn, in vivo 15 mg/kg of orally administered TMZ markedly reduced PRL production and increased prolactinoma cell apoptosis in mice bearing xenografted prolactinomas. Intratumoral ß-Catenin strongly correlated with Prl and Cyclin D1, and importantly, TMZ downregulated both ß-Catenin and Cyclin D1, supporting their significance in prolactinoma growth and as candidates of therapeutic targets. When tested in vitro, TMZ directly reduced MMQ cell viability, increased apoptosis and produced G2/M cell cycle arrest. Remarkably, ß-Catenin activation and VEGF secretion were inhibited by TMZ in vitro. CONCLUSIONS: We concluded that dopamine resistant prolactinomas undergo a ß-Catenin relocalization in relation to normal pituitaries and that TMZ restrains experimental prolactinoma tumorigenicity by reducing PRL production and ß-Catenin activation. Together, our findings contribute to the understanding of Wnt/ß-Catenin implication in prolactinoma maintenance and TMZ therapy, opening the opportunity of new treatment strategies for aggressive and resistant pituitary tumors.


Assuntos
Neoplasias Hipofisárias , Prolactinoma , Animais , Ciclina D1 , Humanos , Camundongos , Modelos Teóricos , Neoplasias Hipofisárias/patologia , Prolactina/metabolismo , Prolactina/uso terapêutico , Prolactinoma/tratamento farmacológico , Prolactinoma/metabolismo , Prolactinoma/patologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , beta Catenina
4.
Endocr Relat Cancer ; 26(1): 13-29, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30121620

RESUMO

Preclinical and clinical studies support that Notch signaling may play an important oncogenic role in cancer, but there is scarce information for pituitary tumors. We therefore undertook a functional study to evaluate Notch participation in pituitary adenoma growth. Tumors generated in Nude mice by subcutaneous GH3 somatolactotrope cell injection were treated in vivo with DAPT, a γ-secretase inhibitor, thus inactivating Notch signaling. This treatment led to pituitary tumor reduction, lower prolactin and GH tumor content and a decrease in angiogenesis. Furthermore, in silico transcriptomic and epigenomic analyses uncovered several tumor suppressor genes related to Notch signaling in pituitary tissue, namely Btg2, Nr4a1, Men1, Zfp36 and Cnot1. Gene evaluation suggested that Btg2, Nr4a1 and Cnot1 may be possible players in GH3 xenograft growth. Btg2 mRNA expression was lower in GH3 tumors compared to the parental line, and DAPT increased its expression levels in the tumor in parallel with the inhibition of its volume. Cnot1 mRNA levels were also increased in the pituitary xenografts by DAPT treatment. And the Nr4a1 gene was lower in tumors compared to the parental line, though not modified by DAPT. Finally, because DAPT in vivo may also be acting on tumor microenvironment, we determined the direct effect of DAPT on GH3 cells in vitro. We found that DAPT decreases the proliferative, secretory and migration potential of GH3 cells. These results position selective interruption of Notch signaling as a potential therapeutic tool in adjuvant treatments for aggressive or resistant pituitary tumors.


Assuntos
Adenoma/patologia , Neoplasias Hipofisárias/patologia , Receptores Notch/antagonistas & inibidores , Adenoma/metabolismo , Animais , Linhagem Celular Tumoral , Diaminas/farmacologia , Feminino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Hipofisárias/metabolismo , Prolactina/metabolismo , Ratos , Receptores Notch/metabolismo , Transdução de Sinais , Tiazóis/farmacologia , Carga Tumoral
5.
Oncotarget ; 8(34): 57072-57088, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28915655

RESUMO

Pituitary adenomas are among the most frequent intracranial neoplasms and treatment depends on tumor subtype and clinical features. Unfortunately, non responder cases occur, then new molecular targets are needed. Notch system component expression and activation data are scarce in pituitary tumorigenesis, we therefore aimed to characterize Notch system in pituitary tumors of different histotype. In human pituitary adenomas we showed NOTCH1-4 receptors, JAGGED1 ligand and HES1 target gene expression with positive correlations between NOTCH1,2,4 and HES1, and NOTCH3 and JAGGED1 denoting Notch system activation in a subset of tumors. Importantly, NOTCH3 positive cells were higher in corticotropinomas and somatotropinomas compared to non functioning adenomas. In accordance, Notch activation was evidenced in AtT20 tumor corticotropes, with higher levels of NOTCH1-3 active domains, Jagged1 and Hes1 compared to normal pituitary. In the prolactinoma cell lines GH3 and MMQ, in vivo GH3 tumors and normal glands, Notch system activation was lower than in corticotropes. In MMQ cells only the NOTCH2 active domain was increased, whereas NOTCH1 active domain was higher in GH3 tumors. High levels of Jagged1 and Dll1 were found solely in GH3 cells, and Hes1, Hey1 and Hey2 were expressed in a model dependent pattern. Prolactinomas harbored by lacDrd2KO mice expressed high levels of NOTCH1 active domain and reduced Hes1. We show a differential expression of Notch system components in tumoral and normal pituitaries and specific Notch system involvement depending on adenoma histotype, with higher activation in corticotropinomas. These data suggest that targeting Notch pathway may benefit non responder pituitary adenomas.

6.
Int J Endocrinol ; 2014: 608497, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25505910

RESUMO

The role of angiogenesis in pituitary tumor development has been questioned, as pituitary tumors have been usually found to be less vascularized than the normal pituitary tissue. Nevertheless, a significantly higher degree of vasculature has been shown in invasive or macropituitary prolactinomas when compared to noninvasive and microprolactinomas. Many growth factors and their receptors are involved in pituitary tumor development. For example, VEGF, FGF-2, FGFR1, and PTTG, which give a particular vascular phenotype, are modified in human and experimental pituitary adenomas of different histotypes. In particular, vascular endothelial growth factor, VEGF, the central mediator of angiogenesis in endocrine glands, was encountered in experimental and human pituitary tumors at different levels of expression and, in particular, was higher in dopamine agonist resistant prolactinomas. Furthermore, several anti-VEGF techniques lowered tumor burden in human and experimental pituitary adenomas. Therefore, even though the role of angiogenesis in pituitary adenomas is contentious, VEGF, making permeable pituitary endothelia, might contribute to adequate temporal vascular supply and mechanisms other than endothelial cell proliferation. The study of angiogenic factor expression in aggressive prolactinomas with resistance to dopamine agonists will yield important data in the search of therapeutical alternatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...